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Theory of inclusion controlled grain growth 

N. A. H A R O U N  
College of Engineering, King AbduI-Aziz University, P.O. Box 1540, Jeddah, Saudi Arabia 

Different inclusion/grain boundary interactions have been analysed with emphasis on the 
grain boundary structure and the geometry of the inclusion/boundary profiles. Crystalline 
inclusions can inhibit grain growth, provided one or more inclusions intersect each 
boundary. An equation for the limiting grain size, in terms of the volume fraction and 
the particle size distribution of the inclusions, is derived and is shown to explain the 
inclusion controlled limiting grain sizes in calcium fluoride and in alumina, as well as 
grain coarsening in steel. Conditions for the drag of amorphous particles or pores, and for 
pore isolation are discussed. 

1. Introduction 
Second phase inclusions can affect the geometry 
of grain boundary migration, kinetics of grain 
growth and the ultimate grain size. Depending on 
the nature of inclusions and the driving force, an 
inclusion can pin or be dragged or by-passed by 
grain boundaries [1]. 

2. Pinning of grainboundaries - earlier 
theories 

Inclusions of a second phase are known to halt or 
retard grain boundary migration [1]. The effec- 
tiveness of inclusions depends on their size and 
number. For a volume fraction, f ,  of inclusions 
whose average particle size is d, a relation has been 
developed by Zener for the limiting grain size 

O1 [2] 2d 
D, = -~-. (1) 

The Zener concept is based on two main 
assumptions: (i)that a migrating grain boundary 
does work as one unit, much the same as a curved 
soap bubble boundary, (ii)that an inclusion 
exerts a drag along the grain boundary meeting 
an inclusion at an angle 0 (Fig. 1) given by 
d7 cos 0 sin 0, where 3, is the specific surface 
energy. 

A balance of forces would determine the limit- 
ing grain size. Multiplying the drag by the number 
of inclusions per unit area, and equating to the 
driving force per unit area led to Equation 1. 
However, the present author has pointed out that 
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the measured grain boundary curvatures are at 
least an order of magnitude less than the grain 
size [3]. This should change the constant in 
Equation 1 to ~ 0:08 so that 

d 
D1 = 0 .08- - .  (2) 

f 
A more serious drawback of the same equation 
has been shown to be that it does not guarantee 
that, at the limiting grain size, every boundary 
meets (and is pinned by) at least one inclusion. 
The latter condition can be satisfied by the 
relation [3,4] 

1.03d 
D1-  fin (3) 

The inclusions were assumed uniform in size, d. 
It was concluded [3, 4] that the limiting grain 
size would be determined either by the modified 
Equation 2 for f in the range 0.5% volume or 
otherwise by Equation 3. 

Gladman [5] has considered in detail the profile 
of a grain boundary around an inclusion to compute 
the energy changes during unpinning. Considering 
a two dimensional model of tetrakaidecahedral 
grains, an equation of the form 

der 3Df 13 2t-1 : 

has been derived. Z is the ratio between a growing 
grain size diameter and the matrix grain size, 
assuming that only grains with Z ratio I> 1.33 can 
grow, similar to the earlier Hillert grain growth 
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Figure 1 Geometry of inclusion/boundary interaction. 

theory [6]. It was proposed that there is a critical 
inclusion size der below which inclusions are 
ineffective for pinning and above which are 
insufficient in number to do so. This was used to 
explain grain coarsening behaviour in austinitic 
steels containing aluminium nitride inclusions. 

3. Mechanism of grain boundary migration 
Grain boundary migration can be viewed either 
through a thermodynamic or an atomistic 
approach. Typical of the former are Burke and 
Turnbull's single process theory [7] and Mott's 
group-theory [8], where all the atoms of a grain 
boundary have an equal chance to migrate from a 
convex to a concave grain boundary. The rate is 
governed mainly by the activation energy and 
entropy. The interaction of an inclusion with a 
grain boundary should be considered from an 
atomistic view. 

Earlier models considered grain boundaries as 
an amorphous region, islands of good fit and bad 
fit [8] and dislocations [9, 10]. More recently, 
Gleiter has shown that both high angle [11] and 
low angle [12] grain boundaries can be viewed as 
a series of steps of a zig-zag form, made of close 
packed planes as they meet a boundary. This was 
based on transmission electron microscopy of an 
A1-0.39 wt % Cu foil, where patterns of grain 
boundary lines were observed. Geometrical proper- 
ties of these lines proved them to be neither 
fringes, Moir~ fringes nor dislocations [13]. The 
observations that these lines are displaced on 
meeting either the for  surface or the thickness 
fringes together with the occurence of spirals 
(similar to crystal growth spirals) has confirmed 
that these lines were interpenetrating steps 
composed of {1 1 1} planes. The sources of these 
lines were observed to be grain boundary junctions 
or screw dislocations. Steps could be observed in 
80% of the boundaries, their absence in others 
could be attributed to electron microscopy 
resolution limitations. 

The concept of coincidence lattice site bound- 
aries i.e. Kronberg-Wilson special angle boundaries 
[14] was extended using field ion microscopic 
observations [15, 16] to view the boundary in 
terms of lattice coincidence [17-19].  Deviation 
from ideal coincidence is taken by step or ledge 
formation and superimposed dislocations - the 
so-called CLD model [20]. Coincidence and twin 
boundaries would contain no steps. Calculations of 
the minimum energy configurations in a plane 
normal to a tilt boundary [21] and in a symmetric 
tilt boundary [22] led to the same picture for the 
boundary structure. Coincidence boundaries were 
observed in ionic compounds e.g. MgO and CdO 
[23]. It was proposed that nonmetallic crystals 
would exhibit steps with relatively large dis- 
location vectors [11]. The step model was shown 
to be in harmony with many phenomena such as 
anisotropy of diffusion, grain boundary mobility 
and energy data [18]. 

Atoms in a grain boundary could thus be 
divided as grain atoms that lie in the lattice of 
either grain or boundary atoms, in the region 
between two grains: an echo of the old good and 
bad fit model [8]. Grain boundary migration 
would thus consist of the emission of atoms from 
the steps of the shrinking [24] grain to the grain 
boundary, followed by adsorption on the growing 
grain: This occurs in stages; namely emission of 
atoms (and absorption of vacancies) from kinks in 
the steps to a general step position, diffusion along 
the step, dissociation from the step into a grain 
surface position, desorption to grain boundary 
atoms and finally condensation to a step kink 
position in the growing grain surface [24]. Analysis 
of the kinetics of these steps has led to an equation 
in which the mobility of a grain boundary mainly 
depends on the step and kink density on both 
surfaces of the mating grains i.e. on grain boundary 
orientation [24, 25]. Only for small angle bound- 
ary migration is migration carried out by diffusion 
along dislocation cores [10, 25]. 

4. Grain boundary - inclusion 
pinning interaction 

Instead of viewing the grain boundary as a flexible 
membrane the local environment (few atomic 
layers) around an inclusion should be considered. 
Surface energy equilibrium necessitates that a 
boundary should subtend equal angles with both 
grain inclusion surfaces. The configuration of a 
migrating curved boundary moving past an inclusion 
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Figure 2 Oxide inclusions in copper (X 115). 

should change to a doubly curved profile that ends 
with a short rather flat portion, as shown in Fig. 1. 
Typical examples of this profile can be observed 
around oxide inclusions in copper [16] in Fig. 2, 
as well as A1N and NbC inclusions in steel [5, 27], 
and ThO2 inclusions in tungsten [28]. 

Adopting the step mechanism of Gleiter [24] 
the short relatively flat regions near an inclusion 
should have a less step density, and hence less 
mobility than others. An additional retarding factor 
is the possible existence of a gradient of inclusion 
solute atoms. 

Referring to Fig. 1, although the boundary 
as a whole tends to migrate in the Y-direction, 
the oppositely curved area in the vicinity of an 
inclusion would tend to migrate in the opposite 
direction. The assumption that any group of atoms 
should tend to migrate according to their own 
environment, and the necessity of maintaining 
boundary continuity should bring the migrating 
boundary to a halt. 

5. Criteria for the overall pinning of 
grain boundaries by inclusions 

Following Heuer [29], the driving force for grain 
boundary migration is taken as "),fZ/R, f2 is the 
atomic volume and R the radius of curvature. 
According to curvature measurements made in 
MgO specimens [3] R "~ 9D i.e. the driving force 
should be 7~2/3/9D. The component of the 
pinning force can be shown to be rrd3' cos 0 sin 0. 
A grain boundary will be pinned if the latter 
exceeds the driving force i.e.Dd sin 20 >~ 0.07 g22/3. 
The maximum pinning force is attained when a 
boundary moving past an inclusion reaches the 
position where 0 =45  ~ at which position the 
inequality becomes: dD >~ 0.07 ~2/3. Considering 
the relative sizes of d, D and [2 it can be shown 
that any immobile second phase inclusion would 
pin that boundary. Earlier electron microprobe 
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observations of alumina microstructures, contain- 
ing ZnO and NiO inclusions [30] showed that 
these inclusions invariably lie on grain boundaries 
and corners. The grain sizes of these specimens 
were grown from 0.3pm to 24 -34gm.  Not a 
single observation was made of an inclusion lying 
in the interior of a grain. 

Previously, the condition of one inclusion per 
boundary has been worked for inclusions of a 
uniform size (Equation 3). Since we are interested 
in the number of inclusions, it is realized that the 
presence of a distribution of particle sizes, which 
is the more general case, might entail considerable 
error in the estimate. As an illustration, assume 
inclusions of average size equal to 5/am in a 
material whose grain size is 20pro. For a volume 
fraction f of inclusions, the number of inclusions 
per boundary [4] for uniform sized inclusions 
would be: 0 . 2 4 7 D 2 X 6 f / n d  2 =  7.52f. If 1% of 
the inclusions have a size of only 0.5 gm, these 
would contribute: 0.01fX7.52(5/0.5) 2 = 7.52f, 
i.e. 100% more inclusions. The presence of 1% of 
O.1/am inclusions would similarly increase the 
number of inclusions about 2500%. Compared 
to Equation 3 the limiting grain size would be 
an order of magnitude less in the former case, 
and 2 -3  orders of magnitude less in the latter 
case. 

Now, if a polycrystalline material of average 
grain size D contains f volume fraction of crystal- 
line inclusions, and these have a particle size 
distribution: x l ,  x 2 ,  xa . . . x n  of particle sizes 
da, d2 �9 �9 �9 d~, it can be shown that the number of 
inclusions per unit area is 3 . 8 2 f Z x i / d ~  .' For an 
average boundary area of 0.247D ~ (tetrakaideca- 
hedron model of grain shapes), at least one 
inclusion would lie on each boundary if 

= x i  ( 4 )  



TABLE I Limiting grain sizes in CaF 2 0zm) 

Addition D ~ D ] 
(Experimental) (Equation 4) 

O l 

(Equations 
2 and 3) 

DI D1 (Experimental)/ Inclusions per 
(Equation 1) DI (Equation 4) boundary 

Based on Based on 
psd 

1 wt% NiO 24.3 24.7 31.8 
I wt% CrO 3 23.4 23.56 43.9 
lwt%MgO 19.1 28.29 48.2 
lwt%MnO2 23.8 37.99 35.9 
1 wt % ZnO 14.6 27.88 26.9 

302.9 0.99 0.42 1 
329.5 1.38 0.29 1.17 
533.3 0.68 0.07 0.82 
339.6 0.63 0.23 0.79 
306.7 0.52 0.20 0.72 

The choice of the model for grain shape has been 
shown not to affect the estimation critically [4]. 
Also, the presence of a distribution of grain sizes 
would not affect the relation since smaller grains 
not yet satisfying the condition of one inclusion 
per boundary would ultimately grow to D1. 

If a count of the number of inclusions per unit 
area, N, is available, Equation 4 can be put in the 
more workable form 

Oi = 2(N) -u2. (5). 

In practice, it is believed that grain growth should 
stop at a size somewhat lower than DI in Equations 
4 and 5 i.e. when most but not all grain boundaries 
are pinned, since the motions of different grain 
boundaries are interlinked. Also inclusions lying at 
grain corners should be more effective than others. 
A lesser number of such inclusions is needed to 
halt grain growth. 

An important corollary is to explain the 
exaggerated growth frequently observed in the 
course of heat treating materials containing a 
minor second phase. It is proposed that the critical 
stage for starting exaggerated growth should be 
when the grain size reaches a value around 0.3-0.6 
of the limiting size. At this stage, the number of 
inclusions per boundary should be 0.1-0.4 i.e. 
some boundaries are inhibited while others can 
grow. This contrast allows the latter to evolve 
into exaggerated or runaway grains. This affects 
both the kinetics of grain growth and the grain 
size distribution [31,32].  

6. App l ica t ions  of  the theory  of p inning 
6.1. The  l im i t i ng  grain sizes in CaF 2 
Calcium flouride powder* was wet mixed with 
1 wt% of either MgO, ZnO, MnO2, NiO or CrOa 
powder. Pressed compacts were air fired at 1000 ~ C 
until grain size measurements indicated no further 
growth. Ceramographic preparations were carried 

*Merck W. Germany. 

out on silion carbide and gamma alumina abrasives 
followed by etching in 50%HC1 solution. The 
average grain size was taken as 1.56 the average 
intercept length [33], for which 300--400 inter- 
cepts were used for a measurement. The limiting 
grain sizes are shown in Table I. The particle size 
distributions (psd) of the additives, as measured by 
optical microscopy, are shown in Fig. 3. The 
estimated number of additive inclusions per 
boundary at the limiting size are shown also in 
Table I. For comparison, the theoretically calcu- 
lated limiting grain sizes according to Equations 
1 to 4 are included in Table I. Excellent agreement 
always exists with Equation 4. It can also be 
seen that the use of Zener formula leads to gross 
errors in the estimation of the limiting grain size. 
Equation 3 gives intermediate values. The latter 
equation was based on the average rather than 
the distribution of inclusion sizes. Comparison 
of the estimated inclusion numbers based on 
either of these is shown in the last two columns of 
Table I, which emphasizes the importance of 
taking the distribution into consideration. The 
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Figure 3 Particle size distributions (psd) of additions of 
CaF 2. 
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Figure 4 Particle size distributions 
of additions to A1203 . 

small deviations from Equation4, mostly to 
the lower side can be readily explained. The 
microscopic method of particle size determination 
tends to show the distributions shifted to the 
larger side due to agglomeration. This is apart 
from the limitation of the method to sizes above 
0.5/.tm. Impurity solute drag may contribute to 
retarding grain growth short of the theoretical D1. 
I t  was pointed out [4] that the condition of one 
inclusion per boundary is probably over restrictive, 
as grain growth might practically be brought to a 
halt once most of the grain boundaries are pinned. 
Table I shows that at the limiting grain sizes 
reached, the number of inclusions per boundary 
ranges between 0.72 and 1.17 which confirms the 
theory behind Equation 4. The high value of D1 
for CrO3 inclusions may be due in part to in- 
efficiency of mixing. More probably, the volatility 
of CrO3 , [34] would remove some of the finest 
size fractions, that contribtrte most to the total 
number of inclusions. Additive respective phase 
equilibria information for CaF2 is at present too 
meagre to elaborate these results any further. 

6.2.  Limit ing grain sizes in a lumina  
The limiting grain size of A12 03 doped with MgO, 
NiO or ZnO was shown to depend on the presence 
of second phase particles on the grain boundaries 
and corners [30]. Correlation with the amount 
and particle size of inclusions was sought, based on 
Equations 2 and 3 [30]. The particle sizes reported 
were the electron microscopic measurements of 
the average crystallite sizes, as the NiO and ZnO 
powders were observed to be loose agglomerates 
of crystaUites [3]. Since the distribution of sizes 
was shown to be more important for determining 
the number of inclusions and hence D1, these will 
be used to reanalyse the data. The particle size 
distributions of the three oxide additives are 
shown in Fig. 4. In Table II a comparison of the 
limiting grain sizes attained at 1675 ~ C with those 
predicted by Equations 1,2, 3 or 4 is made. Again, 
as with CaF2, errors of at least two orders of mag- 
nitude are incurred if Equation 1 is used, better 
agreement is achieved with Equations 2 and 3 and 
excellent agreement is obtained with Equation 4. 
Deviations from Equation 4 to the higher side can 

TABLE II Limiting grain sizes in AI~O 3 (/~m) 

Addition D, D 1 D l 
(Experimental) (Equation 4) (Equations 

2 and 3) 

D x D 1 (Experimental)/ Inclusions per 
(Equation 1) D, (Equation 4) boundary 

Based on Based on 
psd 

0.25 wt % MgO 43.9 32.40 425.8 
0.25wt%ZnO 33.9 33.31 372.1 
0.25wt%NiO 23.9 25.85 285.5 

3785 1.35 0.01 1.16 
3307 1.02. 0.01 1.01 
2529 0.92 0.01 0.96 

2 8 2 0  



readily be explained by the vaporization of additive 
particles [35]. The finer particles (that contribute 
more to the number of inclusions) should vaporize 
more readily. 

6.3. Grain coarsening in steel 
Grain coarsening in steels was observed in the pres- 
ence of A1N [27] or TiC and NbC [1] inclusions. 
The grain coarsening temperature was shown to 
depend on the number of AlN particles [27]. 
These increase with the A1N content up to 0.8%. 
Further increases led to agglomeration and hence 
decrease of the number of AlN particles, that 
reduced the grain coarsening temperature again 
[27]. Gladman [27] has estimated a number 
of 5 - 6  AlN inclusions per boundary to be the 
critical number below which grain coarsening is 
induced. Although these estimates are different 
from those predicted theoretically above (i.e. 
0.1-0.4 inclusions per boundary for the onset of 
exaggerated growth) the concept of a critical 
number of inclusions is supported. It can be 
pointed out that Gladman's estimates were made 
for coarsening in the temperature range 900 
to 1250 ~ C. The morphology of AlN inclusions 
was acicular (except at 1200 ~ C) for which the 
estimates of numbers are in doubt. 

7. Unpinning of grain boundaries 
7.1. Crystalline inclusions in conjunction 

with other driving forces 
The theory of the limiting grain size was based on 
grain boundary energy as the only driving force 
for migration. This was equated to the inclusion 
drag to obtain Equation 4. However, additional 
driving forces can help a grain boundary to over- 
come the drag and by-pass an inclusion. One 
common example of these driving forces is the 

Pinned 

Unpinned 

stored energy of plastic deformation. This is 
typically 100 times more than the boundary 
energy driving force [1]. It is known that, in 
heavily cold worked metals, grain boundaries can 
migrate against their centre of curvature [28], 
and hence could be energetic enough to by-pass 
inclusions. Equation 4 would not hold in these 
circumstances. Ultrasonic energy accelerated grain 
growth [36], probably due to by-passing the 
inclusions in copper [25], is similar to the cold 
work energy effect. 

7.2. Unpinning of pores 
Pores can be, and have been shown to be, unpinned 
from migrating grain boundaries [29]. Unpinning 
results when the driving force for boundary 
migration overcomes the pinning force exerted by 
a second phase. It was shown above that any 
immobile second phase inclusion lying on a grain 
boundary can pin that boundary. However, unpin- 
ning can occur if pores shrink in such a manner as 
to be ultimately freed from the boundary. This 
can be easily visualized as follows. Referring to 
Figs. 5a and b, a pore lying on a grain boundary or 
comer and shrinking isotropically would ultimately 
be unpinned, except for the rare cases of either a 
180 ~ or a concentric triple junction, respectively. 
This is in line with the concept of a critical bubble 
size for unpinning of gas [37] bubbles. Hence, 
it is concluded that pores as a second phase can 
shrink to isolation inside grains and/or be swept 
by migrating boundaries. The choice of either 
depends on the relative mobility of pores and grain 
boundaries. 

Q 

Figure 5 (a) Pore unpinning at a grain boundary, (b) pore unpinning at a grain corner. 

8. Drag of amorphous inclusions 
Liquid and amorphous inclusions can be dragged 
along with a migrating boundary [38, 39]. This 

Pinned 

Unpinned  

b 
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has been demonstrated for the drag of amorphous 

silica inclusions [38,39] and liquid B2Oa and 
GeO2 in recrystallized copper [39]. In contrast, 
no such drag was observed for crystalline A12Oa 

inclusions [39]. Mobility of inclusions was shown 
to increase inversely with their viscosity [39]. 
The process of drag was proposed to be controlled 
by the diffusion of matrix atoms from the leading 
to the trailing end of the boundary through the 

inclus ion-matr ix  interface [39]. Diffusion through 
the liquid particles can facilitate this process, in 

contrast to crystalline solids. 
A similar mechanism was proposed [25] to 

explain the observed drag of pores or gas bubbles 

[37], where surface diffusion will be the dominant  
process [25]. An alternative mechanism involving 

prismatic dislocation loops has been proposed 

[251. 
: 

9. Conclusion 
Crystalline inclusions can pin grain boundaries 

when the driving force is surface energy alone. The 

resulting limiting grain sizes given by Equation 4 

are in good agreement with the results of inclusion 

controlled grain growth in CaF2 and A12Oa. 

Amorphous solid inclusions and pores can be 
dragged with migrating boundaries depending on 

their mobility or viscosity. Pores can also be 
isolated inside the growing grains, possibly a result 

of pore shrinkage away rather than being by-passed 

by the grain boundaries. 
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